ARTICULATED RHOMBIC PRISM PISTON ENGINES

Italian patent filed on 18/11/2008, N° TO 2008 A 000847

Vittorio Scialla, Via Cibrario 114, 10143 Torino vittorio.scialla@strumentiperleaziende.com

ARTICULATED RHOMBIC PRISM PISTON

ABSTRACT

Articulated rhombic prism piston for thermal machines, provided with four movable sides (1), hinged to four links (2), so as to cooperate with two parallel planes inside a machine body, to form a variable geometry closed chamber, substantially shaped as a right rhombic prism, whose volume varies as the relative orientation of said four sides varies.

Two opposed articulated edges of said piston are provided with piston rods (5), linked to two cranks (6), which, by effect of a transmission system, rotate in the same direction, at the same speed and with a 180° phase-shift with each other, so that said articulated rhombic prism keeps itself always centred with intake and exhaust valves (7), placed in front of each other in said two parallel planes of said machine body. Parallelism and alignment among said components of said piston are assured by means of auxiliary connecting rods (3) and gears (4).

- Applications of articulated rhombic pistons include:
- direct injection gasoline engines,
- indirect injection gasoline engines,
- Diesel engines;
- closed cycle Stirling engines;
- inverted cycle Stirling heat pumps.

ARTICULATED RHOMBIC PISTON ENGINES - CHARACTERISTICS AND ADVANTAGES -

1 DOUBLE SP An articulated rh rather than two	ECIFIC POWER nombic piston completes a for revolutions needed by a cylir	our strokes cycle within a singl	e drive shaft revolution,
rather than two i	revolutions needed by a cylin	ndrical piston.	
Start of intake	Start of compression	Ignition and start of expansion	Start of exhaust

VANTAGGI

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
*** Double specific power (at the same RPM)						At the same rotational speed, it doubles the ignition rate and the output power.
	*** Half RPM (at the same power output)		***	**		 It outputs the same power at halved rotational speed, and reduces: by 75% vibration and related power loss by over 50% friction power loss and friction wear

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
*** More levelled output torque		**	**			Output torque is more levelled, similar to that of a 5 cylinders engine, however no balance shaft is needed.
		**				The flywheel may be reduced, or eventually eliminated.

Improved performance	Improved efficiency	Cost reduction	Lower vibration/	Longer durability	Higher reliability	Notes
			noise			
	**		***	**	**	Drastic reduction of vibration and related power loss and effects on durability and reliability
		*** Reduction of dampers and noise insulations				Substantial simplification of vibration damping and noise insulation
		**				No rotating counterweights are needed

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
	**			**	**	Reduced mechanical stress and power loss for vibration

ELIMINATION OF CRANKSHAFT

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
	**	***				Elimination of the
		Elimination of				crankshaft and reduction
		the crankshaft				of cost, size, weight.

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
	**	*** Elimination of the camshafts	**			Elimination of the camshafts and related transmission components (toothed wheels, chains, belts, pulleys,), and related power power loss, noise, insulations, failures.

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
	**	*** Elimination of auxiliary transmission components	**		***	Direct operation of alternator, pumps, compressors, or other devices, without additional transmission components, as toothed wheels, belts, pulleys, etc.

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
	**	***				Reduced size and weight.

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
				***		Minimum wear of pistons and of the parallel planes of the engine body
		**				Connecting rods can be lighter

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
		*** Lighter construction of the engine body				Reduced force on the parallel planes of the engine body.

NEW FRONTIERS OPENED BY ARTICULATED RHOMBIC PISTONS

11

FAIL-SAFE UTILIZATION OF ELECTRONICALLY OPERATED VALVES

An articulated rhombic piston is **interference-free**, even if valves should stay open, so that it is particularly suitable to be used in conjunction with electronically operated valves, which allow variable valve timing and optimization of performance/ efficiency, without any risk of catastrophic failures.

ADVANTAGES

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
***	***					Utilization of
Optimization of	Optimization of					electronically operated
performance/	performance/					valves + variable valve
efficiency	efficiency					timing

12 POSSIBLE HIGHLY ENERGY-EFFICIENT 8 STROKES CYCLE

By virtue of the double specific power of an articulated rhombic piston and of its overlapping power strokes, **a four-piston engine** can be hypothesized, whose pistons can be switched into **an 8 stroke mode:**

Four regular strokes,
Four additional stroke

- Four additional strokes, without fuel injection, wherein:
 - residual heath of the combustion chamber is recovered,
 - eventually, further heath is recovered from exhaust,
 - with the additional advantage that the cooling system becomes superfluous.

ADVANTAGES

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
	*** Utilization of residual heath					Energy extraction from residual heath
		*** Elimination of the cooling system			***	Cooling the engine by extracting mechanical work and elimination of the cooling system

13 POTENTIAL ELIMINATION OF GEARBOX By virtue of the double specific power of an articulated rhombic piston and of overlapping power strokes, a four-piston engine can be hypothesized, which, at regimens ranging from 300 RPM (equivalent to 600 RPM) to 6000 RPM (equivalent to 12.000 RPM), would run a vehicle at a speed range from 10 to 200 km/h, with a 1:1 fixed gear ratio and a 1:2,8 differential gear ratio and 50 cm diameter wheels.

Improved performance	Improved efficiency	Cost reduction	Lower vibration/ noise	Longer durability	Higher reliability	Notes
	**	***				Elimination of the
		Eventual				gearbox and reduction
		elimination of				of size, weight, power
		the gearbox				loss and cost.

ARTICULATED RHOMBIC PISTON ENGINES - CHARACTERISTICS IN SYNTHESIS -

A. PERFORMANCE

Double specific power	(at the same rotational speed)		

More leveled output torque	(similar to that of a 5-cylinder engine)		
EVENTUAL (NEW FRONTIERS)			

Optimization of performance/ efficiency	(by using electronically operated valves)		

B. FUEL ECONOMY

1444 1444		
<u>^^</u>		
More than halved friction power loss	(halved regimen, at the same power output)	

Nearly total elimination of power loss for	(intrinsically balanced moving masses)	
vibration	(halved regimen at the same power output)	
Vibration	(charter crank stroke and reduced accolorations of	
	moving masses)	

Reduction of engine's size and weight	(optimal space occupation)	
	(reduced forces on the engine at ignition)	
**		
Weight reduction by elimination of the crankshaft	(single granks are used)	
Deduction of friction by climination of the complete	(and the approximation and the maximation along the	
Reduction of friction by elimination of the camshaft	(only two cams on the main drive shaft)	
**		
Reduction of friction in the operation of auxiliary	(direct operation of alternator, pumps, compressors,	
devices	etc.)	
EVENTUAL (NE	W FRONTIERS)	
***	,	
Optimization of performance/ efficiency	(with electronically operated values)	

Utilization of residual basts	(aventual 8 strake avela)	
	(eventual o stroke cycle)	

Eventual elimination of weight and power loss of	(eventual fixed 1:1 ratio)	
gearbox		

C. VIBRATION AND NOISE

*** Nearly total elimination of vibration	(intrinsically balanced moving masses) (halved regimen, at the same power output) (shorter crank stroke and reduced accelerations ov moving masses)
*** Elimination of auxiliary transmission	(direct operation of cams, alternator, pumps
components	compressors, etc.)

D. costs

Elimination of the crankshaft	(four single cranks)		

Elimination of the camshaft	(only two cams on the main drive shaft)		

Elimination of auxiliary transmission	(direct operation of cams, alternator, pumps,		
components	compressors, etc.)		

Reduction of dampers, and noise insulations	(nearly total elimination of vibration)		
	(elimination of auxiliary transmission components for		
	cams, alternator, pumps, compressors, etc.)		

Reduction of engine's size and weight	(optimal space utilization)		

Lighter engine body construction	(reduced forces on the engine at ignition)		

No counterweights or balancing shafts required	(moving masses are intrinsically balanced)		
**			
Reduction or eventual elimination of the flywheel	(more leveled torque, similar to a 5 cylinder engine)		
**			
Lighter connecting rods	(connecting rods are always loaded axially)		
EVENTUAL (NEW FRONTIERS)			

Eventual elimination of the cooling system	(eventual 8 stroke cycle)		

Eventual elimination of the gearbox	(eventual fixed 1:1 ratio)		

E. DURABILITY

*** Minimum wook	(motion of pietone obvious percelled to the same plane)
winning wear	(halved regimen - at the same output power)
**	
Drastic reduction of vibration	(moving masses intrinsically balanced)
**	
Nearly total elimination of vibration	(intrinsically balanced moving masses) (halved regimen, at the same power output) (shorter crank stroke and reduced accelerations of moving masses)

F. RELIABILITY

*** Elimination of auxiliary transmission components	(direct operation of alternator, pumps, compressors, etc.)		
** Nearly total elimination of vibration	(intrinsically balanced moving masses) (halved regimen, at the same power output) (shorter crank stroke and reduced accelerations of moving masses)		
** Reduced mechanical stress	(shorter crank stroke and reduced accelerations of moving masses)		
EVENTUAL (NEW FRONTIERS)			

Eventual elimination of the cooling system	(eventual 8 stroke cycle)		